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ESTIMATION OF EXPECTED VALUE

FOR LOGNORMAL AND GAMMA DISTRIBUTIONS

Gary C. White

Environmental Studies Group
Los Alamos Scientific Laboratory

Los Alamos, NM 87545

ABSTMCT

Concentrations of environmental pollutants tend to follow positively
skewed frequency distributions. Two such density functions are the gamma
and lognormal. Minimum variance unbiased estimators of the expected value
for both densities are available. The small sample statistical proper-
ties of each of these estimators were compared for it~ own distribution,
as well as the other distribution to check the robustness of the e~timator.
Results indicated that the arithmetic mean provides an unbiased estimator
when the underlying density function of the sample is either Iognormal or
gamma, and that the achieved coverage of the confidence interval is great-
er than 75 percent for coefficients of variation less than two. Further
Monte Carlo simulations were conducted to study the robustness of the
above estimators by simulating a lognormal or gamma distribution with the
expected value of a particular observation selected from a uniform distri-
bution before the lognormal or gamma observation is generated. Again, the
arithmetic mean provides an unbiased estimate of expected value, and the
achieved coverage of the confidence interval is greater than 75 percent ,
for coefficients of variation less than two.

INTRODUCTION

The concentrations of environmental pollutants have been suggested to
follow positively skewed frequency distributions by numerous researchers.
IF.particular, Pinder and Smith (197S) investigated the goodness of fit
of the lognormal, Weibull, exponential and no~mal distrib~ltionato radio-
cesium concentrations in soil atidbiota. They found that the lognormal

distribution fit the majority Of the data sets. Giesly and Weiner (1977)



found that the lognormal also tended to fit the concentrations of trace
metals in fish better than the Weibull, exponential, or normal distri-
butions. Ellett and Brownell (1964) suggest the gamma distribution ❑ay
be preferred to the lognormal distribution. Eberhardt and Gilbert
(1975) made an extensive study of how to distinguish these two distribu-
tions, and concluded that this is difficult for less than 200 observa-
tions. Extensive Monte Carlo simulations were done to reach this con-
clusion. Forsythe ti ~. (1973) compared the fit of the gamma and log-
nomal distributions for the concentration of DDT in earthworms, and con-
cluded that both fit the data equally well. Figure 1 shows the similarity
of the lognormal and gamma probability density functions for a variety
of coefficients of variation and expected value equal 1.

Given that both these distributions appear to explain contaminant data
equally well, I want to explore the implication of selecting one of these
two distributions in estimating the expected value of concentration.
Some investigators (Eherhardt and Gilbert 1973) have suggested using
the mrdian of the o’>served~ata to measure central tendecy when a por-
tion of the samples are below detection limits. I believe that the
median may be quite useful for answering some questions, but that usually
the expected value is the desired measure. This paper presents the re-
sults of Monte Carlo simulations studies~of estimating the expected value
(EX) for these two distributions.

Link and Koch (1975) explored the bias which may result when the 3.0g-
normal estimator of expected value is used for distributions other than
lognormal. They found that a large negative bias (up to 97%) may re-
sult when the distribution of the logarithmically transformed variable
is heavier tailed than the normal distribution. However, no bias was
found when the logarithmically transformed variable has less ta~l area
than the normal distribution. They did not consider lognormal estima-
tion with gamma distributed data. -

First the estimation of EX for

ESTIMATORS

the lognormal distribution will be consider-
ed. The density function is given by Aitchison and Brown (1976)

f(x) m~ exp

[ 1-~(lnx- PY)2 dx

Uy x G 2(J;

(X>o; uy>o, -=wy-+ ,
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where P and U2 are the
Finney {1941) ~erived a
FX because of the large

mean and variance of y = in x, respectively.
minimum variance unbiased estimator (MVIJE)for
bias of the maximum likelihood estfmator (MLE).

Finney’s estimator f,s-

fi(x)= exp(~) gn(s#2)

where ~ is the arithmetic mean of the log transformed x values, S* is
the variance of the log transformed x values, and the function g !B the
infinite series

gn(t) = 1+=+ @l)3t2_+
(n-l)5t3 + .OO

n n2(n+l)2! n3(n+l)(n+3)3!

~ finite sample confidence interval can be ~~timated for i(x) by COX’S d~.-
rect method (Land, 1972). A confidence interval is calculated for the
value Y + 1/2 S$ Qnd then antiloged to achieve an interval on E(x). This
interval is asymmetric, but ;~~sthe desirable property that the lower con-
fidence bound cannot be negative. Cox’s direct method was shown to be
easily the best of the approximate methods considered by Land and was
recommended by him when dealing with large sample sizes and moderate
values of 6$. Land’s exact method is not used because of the computational
difficulties involved.

Estimation of the EX for the gamma distribution is much simpler than for
the lognormal distribution. The EX of the gamma distribution is the pro-
duct of the parameters a and f3,where the probability density function
is

fx(x) ‘ -
a-1

exp (-x/13)x dX (x> O;a>O, S>O) .
r(a) 13a

The maximum likelihood equations to estimate a ard ~ are (Choi and Wette,
1969)

‘i’(a)+ log B

where Y(t) is the
property of MLE’s

psi (digamma) function. Hence we ~ce by the invariance
that ~ is the MLE of EX for the gamma distribution. In..

addition, R is also an MVUE of EX. This result is known because 1) the
gamma distribution is a memberof the exponential family, 2) the set of
minimal sufficient statistics (MSS) is

-3-
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n n
ZXL, E

I

log xi ,
i=l 1-1

3) this set of MSS is complete, and 4) any function of the MSS is a MVUE if
the function is unbiased. To see that % is unbiased,

E(z) = E(XL + X2 +.-.+Xnn/n

= [E(xl) +E(x2) +...+E(xn)n/n

= (nvx)/n

“ vx

Hence ~ is a MVUE of EX. The details of this proof can be obtained in Mood
tid. (1974). The result that R is an MVUE is particularly fortuitous 8s
the arithmetic mean of the sample has often been used to estimate EX for real
data. The usual confidence intervals for ~, namely

‘t ‘(n-1)
Sxlfi ,

will be used, with the Central Limit Theorem and the asymptotic normality of
a MLE to justify the assumption of normality. Because of this assumption,
this confidence interval may perform poorly for small sample sizes, The
variance estimate thus obtained is not the same as the varimce of % calculat-
ed by the maximum likelihood estimation procedure. However, the calculations
are much easier to perform, and this estimator is the one commonly used in
the transuranic literature. Therefore, of interest is whether confidence in-
tervals based on this simple variance estimator arc’valid, Of particular
concern is the validity of this approach for small sample sizes, say n = 5.

ROBUSTNESS

Both estimators described above are known to have optimal properties
when used with data derived from their respective distributions. In
addition the performance of each estimator when applied to other dis-
tribution functions is of interest, i.e., how robust the estimator may

be.
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Neither the gamma or lognormal distribution can be mixed with another
gamma or lognormal distribution and the result still be gamma or log-
normally distributed. Formally, let fl(x; 02) and fz(x; ez) be either
gamma or lognormal probability density functions with parameter vectors
01 and 02 respectively. Then assume we sample from a population with
probability p that the variate is distributed as fl(x; e]). The resulting

variate is distributed as

Pfl(x; ’91)+ (l-P) f2(x; 02) .

The concept of mixing two distributions can be extended farther. suppose

that the EX = Bx of f(x) is actually drawn from a second density, g(px).
Then the distribution of x is

fx(x,px)
fXJP (Xlvx) =

x g(l.lx)

or fx(x,llx) -f (XIIJX)E(IJX) .Xlllx

fx(x, Px) IS a family of distributions imiexeJ by the parameter lJX (see

Mood ti fl., 1974:122-124).

This result can be applied to transuranic research by conceptualizing the
distribution of radioactivity in a fallout pattern. Suppose we stratify
the fallout area into n strata, each with mean concentration EXi, i=l,
2, .... no If a random sample of l-m2 quadrats are taken from strata i,
the expected concentration will be EXi. However, quadrats closer to
ground zero would be expected to have slightly larger concentrations.on
the average than quadrats farther away from ground zero. However, this

process is stochastic 90 one method of expressing this randomness is to
assume the expected value of a quaclratis actually drawn from some
distribution, g(~x) .

To simulate this process, g(Bx) WC- assumed to be a unifo~ distribution
with density function

Thue the expected value of an observation was first drawn from a uniform
distribution, and then a variate generated from a gamma or lognormal dis-
tribution with this expected value. The expected value of the resulting

-5-



distribution must be evaluated to show that indeed the expected value is
(a+b)/2:

EX m

m

a

Comparisons

EIE(XIQ]

E(l.Ix)

(a + b)/2

of the lognormal density function and the compound uniform-
lognormal density function are
sity function and the compound

made in Fig. 2. Comparisons of the gamma den-
uniform-gamma density function are made in

Fig. 3.

MONTE CARLO SIMULATIONS

Random normal deviates were gznerated by the method suggested by Bell
(1968) and then transformed to a lognormal deviate by x = exp (y). Ran-
dom gamma deviates with nonintegral shape pnvameter were generated with
the method presented by Fishman (1973). Briefly the method involves
summing k (= greatest integer of a) exponential variates, (?(1),adding
to this sum a product of a beta variate distributed as ~e(a - k, 1.- u + k)
and an exponential ~(l), and multiplying the total by the parameter ~.

Samples of size n = 5, 10, 20, 30, 50, and 100 were dram from each of the
lognormal and gamma distributions. All possible combinations of EX =:1,,
5, 10, 50, and 100 and coefficient of variation of c = 0.25, 0.5, 0.75,
1.0, 1.25, 1.5, and 2.0 were used for both distributions. These combi-
nations give a total of 210 cases per distribution. Each case was
replicated 1000 times to estimate Lhe bias and achieved coverage (pro-
portion of replicates in which the ,constructrd95% confidence intertial
contained the true parameter value) for the two esl.imatorsdiscussed
gbove. In addition, the average length of the confidence interval for
E(X) was calculated for each estimator.

Parameters were calculated from EX and c for the lognormal distribution
as:

2
%

u in (C2+1)

~y w 1/2 1~ [(E~#/(c2+l)] .
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Parameters were calculated from EX and c for the gamma distribution as:

a = l/c2

B
2

=EXC

In simulations
are defined to

where EX was selected from a uniform distribution, a and b
be ?50% of the desired expected value of the distribution.

For example, suppose EX is to be 10.0. Then a = (I-O.5)1O and b = (1+O.S)1O,
or EX is selected from the interval (5, X5). The pazameter values for
a, 6, p“, and u; were then calculated with the formulas Riven above to
generat{ one realization of x.

The infinite series, g*(t)j necessary to calculate i(x) assuming l-ognornal-
ity was evaluated to a point where the ratio of an additional term to
the summation was less than lE-7. Values of the t-statistic were obtained
from tabled values.

,

RESULTS AND DISCIJSSTON

Tn general, the expected value of the distributions had no effect on the re-
bults. Rather, the coefficient of variation tended to explain the observed
phenomena. Hence in the following sections, the statements made will apply
to the range of expected values simulated. A complete ltstir,gof the simu-
lation results is given in White (In Prep.).

Gamma Estimator with Gamma Distributed Data

The arithmetic mean is an unbiased estimator for EX, and so the simulations
showed. Of course, individual point estimates may vary widely. Hence the
main purpose of simulating this estimator was to check the achieved coverage
against the predicted value. A gradual decline in achieved coverage was
noted with an increase in the coefficient of variation (Fig. 4). l;~.wever
for all cases simulated, the achieved coverage is greater than 70%. A slight
decline in achieved coverage is noted also fol decreasing sample sizes. This
trend is more apparent for c m 2 than any other case.

Lognormal Estimator for Lognormally Distributed Data

Because this estimator is MVUE for lognormally distributed data, the chief
purpose for the simulation was to check the c@verage of the confidence
interval. The achieved cc~erage is always close to the predicted 95%
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for n = 100. However, the achieved coverage declines with decreasing
sample sizes (Fig. 5). The minimum achieved coverage is greater than
80Z la all cases. These results are co~,sistentwith the findings of
Land (1972).

LofinormalEstimator for.Gamma Distributed Data

A major finding is that the bias of the logno~mal estimator becomes large for
gamma distributed data as a beco~es small or c becomes large, In parti-
cular, a relative bias {100IAve(E(x)) - EX]/EX)of about 25% is present
for a= 1 (Fig. 6). The cased= 1 corresponds to the exponential dis-
tribution. The relative bias of the lognormal estimator becomes much
worse for a < 1. This result would be expected because the shapes of
the two distributions differ greatly for a < 1. However, even for c = 0.75
(a = 1.78), the relative bias of the lognorfil estimator for gam~a distri-
buted data is about 6%. lilsothe achieved coverage of the confidence in-
terval begins to decrease for c = 1.0 and n = 100 (Fig. 6). Coverage be-
comes very poor for c > 1.

Gamma Estimator for Lognormally Distributed Data

In contrast to the lognormal estimator for gamma distributed data, the
gamma estimator for lognormal data does quite well. This estimator is
unbiased, and so the simulations showed. AlSO, the achieved coverage of
this estimabor is good for small sample sizes (n = 5) (Fig. 7) whereas the
coverage of the lognormal estimator is usually significantly less than the
predicted 95% far n = 5. However the average confidence interval width is
usually greater for the arithmetic mean. Tileachieved coverage of the arith-
metic mean drops as c increases, hut never below 75%, even for n = 5 and
C=2. Also for c = C.75, the average confidence interval len~t!lbecomes
about the same for the two estimators.

Robustness—

The same general conclusions discussed in the prec:eclj.ngfour cections
also hold when the lognormal and gamma estimators are applied to a com-
pound lognormal or gamma distribution with the expected value selected
from a uniform distribution. The arithmetic mean still provides an
unbiased estimate of EX in all cases, while the lognormal estimator pro-
vides an unbiased estimate when the variate is uniform-lognormal dis-
tributed, but not for the case when the variate is uniform-gamma distri-
buted.

-8-

Confidence interval coverage for both estimators is always greater than
70% when thereis negligible bias. Generally the arithmetic mean had
better coverage for the smaller sample sizes, while the lognormal esti-
mator had better coverage for n = 100. Also, the lognormal estimator
tended to have better coverage when c > 1.0. Of course, the average
confidence interval width was also gre~ter for the lognormal estimator



when the coverage was larger than the gamma estimator. For the case
EX = 1.0 and uniform-lognormal data, Fig. 8 provides the reader with
some feel for the relationship between sample size c, and coverage for
the two estimators considered.

CONCLUSIONS AND RECOMMENDATIONS

For small values of c (c < 1), the differences between the two estimators
is relatively small. Generally the confidence interval on the arithmetic
mean provides better coverage at the expense of a wiclerconfidence in-
terval. For larger values of c (1 ~ c ~ 2), the lognormal estimator be-
comes very biased for gamma distributed data, and covsrage tends to de-
cline with increasing c. If no theoretical reasons are available for
selecting one of the distributions simulated, then the arithmetic mean
is to be preferred because it is unbiased for either of the distributions
and tends to have r~:asonablecoverage.
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Fig. 1. Comparison of gamma and lognormal probability density
functions with expected value of unity and four values
of the coefficient of variation.
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Fig. 2. Comparison of lognomal and compound uniform-
lognormal probability density functions with
expected value of unity and four values of
the coefficient of variation, ‘
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Fig. 3. Comparison of gamma and compound uniform-gamma
probability density functions with expected
value of unity and four values of the coeffi-
cient of variation.



Cocfficicnl ‘of Varialion = .25
:——. . ——

LEGEM
—~ Omlhlha

,..”

i
~

j’

I

;

...’
0 0.s 1 1.5 2 2.5 3 :

X Value

0.1

0,0

1.2>

0.6-

.

0-4-

Q-z-

Cocfficicnt of Variation =
O.a,

0.7.

Cocfficimt of Val.ialion = 1.00

0-04 , r
o 0’.s 1 1-s z 2’.5 ; :

X Value

/-+.. —Csmnu klraulho

, m
o-5 1 1.5 2 2.5 3 :

x Vnlll-
.

● 75

b,

Coefficient of Varia Lion = 1.50

0.s

00, ~,

o 0-5 1 1-s 2 2:s a :

.X Value .
e



Fig. 4. Monte Carlo simulation results on confidence interval
coverage of the gamma estimator (arithmetic mean) with
gamma distributed data,EX=l. Value6 at the inter-
sections of rows and columns are the proportion c~f
1000 replications where the computed confidence :Lnterval
included the true expected value.
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Fig. 5. Monte Carlo simulation results on confidence interval
coverage of the lognormal estimator with lognormally
distributed data, EX = 1. Values at the intersections
of rows and columns are the proportion of 1000 repli-
cations where the computed confidence interval included
the true expected value.
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Fig. 6. Monte Carlo simulation results on bias and
confidence interval coverage of the log-
normal estimator with gamma distributed
data, EX = 1. Values at the intersecti~ns
of rows and columns are either 100IAve(E(x))
- EX]/EA (upper figure) or the proportion
of 1000 replications where the computed
confidence interval included the true ex-
pected value (lower figure).
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Fig. 7. Monte Carlo simulation results on confidence interval
coverage of the gamma estimator (arithmetic mean) wj.th
lognormally distributed data,EX=l. Values at the
intersections of rows and columns are the proportion
of 1000 replicates where the.computed confj.denceinter-
val included the true expected value.
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Fig. 8. Monte Carlo simulation results on confidence interval
coverage of the two estimators with the llniform-lognormal
compound distributions,EX=l. Values at the intersections
of rows and columns are the proportion of 1000 replications
where the computed confidence interval included the true

expected value.
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